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1. Introduction

Parallel computing offers the possibility of greatly increased computing power. However, some
problems are so large that even enormous parallel computers will not be able to handle them. Such S
problems include time-dependent partial differential equations (PDE), which comprise regions
with a fine-scale structure as well as regions with a coarse-scale structure. Such problems, solved
on a uniform grid, may require on the order of 1013 floating operations per time step on a uniform
three-dimensional mesh of a thousand points in each direction. The resulting resolution, however,
often yields unnecessarily accurate solutions in the coarsely structured regions.

A tremendous amount of work may be saved by adapting the computations to the structure of
the PDE at hand. The parallel implementation of such an adaptive method can be considered as the
problem of managing a dynamic graph on a (static) network of processors. The properties desired of
this graph are that its edges, as much as possible, map to physical processor interconnections, and
that changes in the graph do not require a major re-arrangement regarding the assignment of nodes
to the processors. Adaptivc methods on parallel architectures have received little attention since
the graph management problem is hard in general and does not paralleliue very well. Our approach
rests on the fact that problems suitable for adaptive refinement do not require random refinements
but exhibit a certain coherence: the solution as well as the behavior of any discontinuities (such
as shocks) are (nearly) continuous and thus the refinements are loaizeL This can be successfully
exploited for operations on data structures as well as maintaining reasonably uniform balance of
workload across the processors. S

We have made the following choices for the solution of our problem. The initial domain on
which a PDE is to be computed is discretised and can be represented as the selective recursive
subdivision of a k-dimensional cartesian grid of cells (without loss of generality, the maximal
number of cells per grid is assumed to be a power of two).

This sort of structure arises from finite difference approximations on adaptive meshes, such
as those produced by Local Uniform Mesh Refinement (LUMR) [2, 3]. Initially, the k-dimensional
grid of cells is uniform and function values are computed in each cell of the grid using information
from neighboring cells. If there are cells (parents) whose computed values are not accurate enough
LUMR establishes a new grid level that contains 2" cells (children) for each 'inaccurate' cell (i.e. the
cell is 'refined'). Function values are then computed for the cells of the finer grids; if the values in
a cell are accurate enough they are promoted to the parent cell, otherwise the process is continued
recursively. Thus, the refinement process can be viewed as establishing a hierarchy of successively
finer grids.

Due to its rich interconnection structure (as much as its commercial availability) the class of
hypercube multiprocessors seems the one most suited to efficient handling of a graph management
problem. Because of its massive parallelism we selected the Thinking Machines Connection Ma-
chine (some of our algorithms will take into account the particular features of this machine). A
mesh refinement algorithm may be implemented on the hypercube by assigning the computation
of function values in each cell to a certain processor. All processors compute in parallel the func-
tion values on their cells; function values on or near a cell boundary are obtained by exchanging
information with the processor that contains the cell sharing that boundary. In order to speed up
computation a processor can distribute cells resulting from a subdivision to other processors; in
this case there is communication between the processor containing the parent and those containing
the children.

Our problem is now to assign cells to particular processors in such a way that processor utiliza-

tion is high (all processors do worthwhile work most of the time), and that processors containing E_

related cells are not too far apart so as to keep communication cost low. These two objectives are -

conflicting: W all cells are assigned to the same processor communication costs are zero but the
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load balance could not be worse. Alternatively, high communication costs and overheads may be
incurred when trying to maintain a reasonable load balance. In particular, related cells (those that
have to communicate with each other) should be in the same processor or in physically connected
processors so that communication can proceed without any intermediate processors (which would 0
have to spend time in forwarding information to target processors). The implicit assumption made
here is that the of cost of communication between two processors is proportional to their distance,
where distance denotes the smallest number of physical communication links that must be traversed
to get from one processor to the other.

Because there are, in general, many more cells than processors and the number of grid levels
and cels is unpredictable, we divide the process of assigning cells to processors into two stages:

1. Each cell is assigned a unique label.

2. Each label is mapped to a processor identifier (id).

The first stage preserves coherence: it is easy to find the labels of siblings, ancestors and descendants
of a cell in the hierarchy of grids; once the label has been determined the corresponding processor
can be found without much effort. The second stage makes it possible to ensure that related cells
are allotted to physically close processors of the hypercube, and that the work load is distributed
reasonably across all processors for our applications. Since the labelling strategy is static, a cell
can determine the label of any other cell at any level without requiring external information.

Since the processors in a hypercube can be enumerated in such a way that the (binary) iden-
tifiers of physically connected processors differ only in one bit (Gray codes) [1], the labels and
processor ids are represented as binary numbers. Therefore, the computation times of all our al-
gorithms are measured in operations on bits, and their time complexities are always low-order
polynomials in the lengths of the labels. The exact expressions for the computation times depend
on the particular implementation and will not be presented here.

The usual method of labelling multi-dimensional grids proceeds by generating labels in such
a way that the ith group of contiguous bits in the label represents the coordinate with respect to
the ith dimension of the grid, and the coordinates associated with each dimension are generated
as members of a Gray code sequence [1, 5, 6]. The obvious properties of such a labelling are that
adjacent cells are easily mapped to physically interconnected hypercube processors and that each
processor can systematically determine the label, and thus the processor, of an arbitrary cell, in
particular a neighboring cell. However, it seems to be hard to achieve reasonably uniform processor
utilization with a labelling based on a contiguous Gray code when the maximal level of refinement
as well as the number of cells are not known in advance.

As a result, for the solution of PDEs on k-dimensional grids, we decided to employ a so-
called interleaved k-dimensionol Gray code that 'scatters' the bits associated with a coordinate:
the (ik)th bit in a label represents the coordinate of dimension i in the grid. The length of a
label increases with increasing level of refinement. Although interleaved Gray codes superficially 0
resemble Quadcodes [41, the latter do not yield the small communication distances of interleaved
Gray codes. In fact, for practical applications, interleaved Gray codes result in essentially constant
comm-Uication times.

As for the organization of this paper, Section 2 presents the basic properties of Gray codes,
and algorithms for labelling cells, determining labels of neighbors in complete and partial one-
dimensional hierarchies of grids. The following Section 3 demonstra" the mapping of one- 0
dimensional labels to processor identifiers. Section 4 extends the one-dimensional results to the
two- and three-dimensional case by introducing interleaved Gray codes. To assess the quality
of our strategy, the model problem of a moving region cf refiremr!',t is analysed and bounds on
processor work load, distance between communicating processors and communication traffic are
established. Experimental results are presented in Section 6, followed by a conclusion in Section 7.
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2. Labels for Cells In One-Dimensional Grids
This section demonstrates how to generate labels for cells belonging to a single one-dimensional

grid, and then for cells belonging to a hierarchy of one-dimensional grids resulting from refinement.
The labelling is done in such a way that labels of neighboring cells, and those of parent and children
cells differ in only one bit and are easily determined.

Labelling Cells In One Grid

The determination of binary labels 0 < C(i) < 2d - 1 for the (ordered sequence of) cells
0 < i < Vi - I in a one-dimensional grid of 2d cells is accomplished by means of a Gray code [11 in
such a way that labels of successive cells differ in only bit.

Definition 2.1. A d-bit binary reflected Gray code, Gray code from now on, is an ordered sequence
of d-bit binary numbers Zd(i), 0:< i e - 1, that are recursively generated as follows:

d=i: C1 (0)=0, Ci(1)=1

d > 1 : Cd(0) = 0,..-i(0), C.. , d(2d- 1 - 1) = 0Cd_(2d- 1 - 1),

(V-1 ) = 1 4 _1 (2
- - 1), ... , f(2' - 1) = lCa-l(0).

The left neighbor of C(i) is C(i - 1) and the right neighbor is C(i + 1), where the indices are taken
modulo 2 d .

Example. Gray codes for d- 1,2,3.

I(o) = 2(0)=oo C3(0)= 000
C1(1) = 1 4(1) = 01 (1) = 001

,(2) = 11 Z3(2) = 011

f-(3) = 10 Z3(3) = 010
C3(4) = 110
4C(5) = III
Z3(6) = 101

Z3(7) = 100

Remarks.

* The first member of a Gray code sequence is 0... 0, and the last one 10... 0.
* The Gray code sequence is cyclic, i.e. each member of the sequence differs from its

successor in exactly one bit, including the last member and the first.

Definition 2.2. iS denotes the bitwise ezclusive-or (XOR) operation:

000 = 0
Z 0 1 101 0 1

1 0 1 = 0,

while the overbar indicates the complement of a binary number: 0 = 1 and 1 = 0.

The following two theorems describe the conversion between binary and Gray code represen-
tation using simple bit operations. To this end, we start with a lemma that shows that the highest
power of two in a number i is also the highest power of two in its Gray code representation Cd(i).
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Lemmam 2.1. A sequence A4 d constitutes a d-bit binary reflected Gray code if and only if

* consecutive, members of Mi differ in exactly one bit,

* the highest power of twom in 4i) agrees with that ini, that is, .M (O) = 0 ... 0, and bit
d -k in M 4 (i) is one whenever e-1 < < 2k andO0 < k5 <d.

Proof. Follows from induction on Definition 2.1. Note that bit 0 in the k-bit Gray code Cj(i) is
one whenever 2 "- < < e~, thus bit d - k in the longer sequence Zd(i) = 0 ... 04C(i) is equal to

d-k

one whenever 2 "- < i < .

Theorem 2.1. From Binary to Gray Code Representation.
Let (i)2 denote the d-bit binary representation of a number 0:< i:5 2d~ - I and let denote a d-bit
Gray code. Then

,C(i) = (i)2 a (Li/2])2 (2.1)

where ([i/2j)2 also has a d-bit representation.

Proof. For any two consecutive numbers (i)2 and (i + 1)2 there exists a k> 1: so that each of
the k trailing bits in (i)2 differ from that in (i + 1)2; for instance, each of the trailing two bits in
(5), = 101 differs from its counter part in (6)3 = 110. Let

(i+ )2 =8O .. d-k-I id-k-2 .. d-I

so that
([i/2j)2 =0 iO id-k-IL id-h.2 .. d-2

(L(Y + 1)/2j)2 =0 iO.. idk- '1 d-h-2 .. 'd2

Let
M4 Y) = (0)2 * (Li/2j)2.

Because of ii-Iij -1 ED . i ?ford-k-2? j~td-2 itfollows that.4s n 4(+)dfe
in bit d - k - 2. Thus, two consecutive numbers in the sequence M4 (i) differ in exactly one bit, and
.M (0) = 0 ... 0. Furthermore, by definition, the highest power of two in M4 (i) is the same as that
of i. Applying Lemma 2.1 one can conclude that .4 is the binary reflected Gray code C'j.

Example. Illustration of Theorem 2.1 for the case d = 3.

(0), * ([i/2j), = .C(i)
000 000 000
001 000 001
010 001 011
011 001 010
100 010 110
101 010 ill
110 011 101
ill 011 100

Thus, the label of cell i in a one-dimensional grid of 2d cells, 0 < i !52 - 1, is given by Z(i).
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Thbeorem 2.2. From Gray Code to Binary Representation.
The binary representation (i)2 of the position of a binary number 10 ... ld-1 within the d-bit Gray
code sequence C, so that C(i) = 10 ... l-,can be obtained from

io= 10

iki.. h, 1:<k:5d -1. (2.2)

Proof. The proof follows from (2.1): (i)2 =(Li/21)2 * C(i).

Remark. If Cdi) is at the ith position in the d-bit Gray code sequence Cd then it is also
at the ith position in any d'-bit Gray code sequence with d > d.

Determining the Labels of Neighboring Cells In One Grid

Now that we know how to assign a unique label to each cell in a one-imensional grid, we want
to quicly find the labels of the left neighbor and the right neighbor of a cell; here, 'left' means
preceding in the Gray code sequence and 'right' succeeding. At first, we introduce a function that
detects the parity of bits equal to one in a binary number.

Definition 2.3. Denote by X(i) the function that XORs all bits of the binary number (i)2 =

io..id-]i and that is equal to one if (i)2 contains an odd number of bits equal to one.

io if d= 1

Lemma 2.2. Finding One Neighbor of a Call.
If C(i) has an even number of ones then its successor C(i+ 1) in the Gray code sequence is obtained
by complementing the rightmost bit in C(i). if C(i) has an odd number of ones then its predecessor
C(i- 1) in the Gray code sequence is obtained by complementing the rightmost bit in Z(i). Formally,

£(i + 1) = io ... id-2,1d-i, if X(C(i)) = 0

,C(i - 1) = .* *i-2, 1d-i, if X(iC(i)) = 1

Proof. If .C(i) has an even number of ones then i is even, since C(O) =0 ... 0 has an even number
of ones and successive Gray code members differ in exactly one bit. If i is even then the last bit
Of (0)2 is zero, thus (i)2 and (i + 1)2 differ in their last bit; also Li/21 = [(i + 1)/2]. With (2.1) it
follows that ZC(i) and C(i + 1) differ in their last bit.

Lemma 2.3. Finding the Other Neighbor of a Cell.
If C(i) has an even (odd) number of ones, then its predecessor £(i - 1) (its successor C(i + 1)) in
the Gray code sequence is obtained by complementing the bit preceding the rightmost one in C(i).
Formally, if C (i) = io ... ik-jik 1 0 ... 0 then

Z(i - 1) = io ... t-i ,kA1 ... 0, if X(C(i)) = 0
CZi + 1) = 1-0 ... .'-ik 1O ... 0, if X(C(:) = 1
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In addition, there are two special cases: the left neighbor of 0 ... 0 in 10 ... 0, and the right
neighbor of 10 .. 0 is 0 .- O.

Proof. By induction using Definition 2.1 of Gray codes. Assuming the statement is true for the
sequence C4, then it is also true for the sequence 0d and for the reversed sequence 1d. At the
boundary of the two sequences one has: 4d(2' -. 1) = 10 ... 0 so X(04d(2' - 1)) = 1, and its right
neighbor is 14d(2 - 1) = 110 ..- 0.

Labelling Cells In a Hierarchy of Grids

A complete hierarchy or complete refinemest of one-dimensional grids represents a sequence
of grids where each grid contains twice as many cells as its predecessor.

Definition 2.4. In a complete hierarchy of grids, the initial grid at level 0 consists of one cell, and
a grid at level k consists of 2 h cells. Each cell (parent) at level k gives rise to two cells (children)
in the next finer grid at level k + 1. The terms level and grid level will be used interchangeably.

The assignment of labels to cells should be conducted in such a fashion that the label of a cell
differs in exactly one bit from that of its two neighbors in the same grid, and in one bit from that
of its parent. This is accomplished by introducing a hierarchy of Gray code sequences: a grid at
level k is associated with a Gray code sequence of length 2 h. The construction of such a hierarchy
becomes clear from the next lemma that gives an alternative characterization of Gray codes. As
for notation, a full stop in a binary sequence denotes concatenation.

Lemma 2.4. f the sequence £(0) ... £(2' - 1) represents a d-bit Gray code then the sequence

.M (2) = C(i).X(,C(i))

.M (2i + 1) = C(i). (Z(i)), 0 : i5 2 d - I

represents a (d + 1)-bit Gray code.

Proof. Since the sequence Z(0) ... Z(2i- 1) constitutes a Gray code all members in M (0) ..- .4 (2d+ l -

1) are different. It remains to show that the neighboring elements differ in one bit. A (2i) =

C(i).X(C(i)) and M (2i + 1) = C(i).1(C(i)) differ in their rightmost bit.
If C(i) and C(i + 1) differ in one bit then X(C(i)) : X(C(i + 1)) hence T(Z(i)) = X(e(i + 1))

so that M (2i + 1) = C(i).X(C(i)) and X4 (2i + 2) = C(i + 1).X(C(i + 1)) differ in one bit. It is now
clear that the sequence M4 fulfills all properties of Lemma 2.1 and hence represents a Gray code.

Example. A(0) = 00, ((0)) = 0, M (0) = 00.0 = 000
.(1) = 00. = 001

C(1) = 01, X(Z(1)) = 1, M (2) = 01.1 = 011
M (3) = 01.1 = 010

Z(2) = 11, X(C(2)) = 0, M (4) = 11.0 = 110
M (5) =-11.0 =-111

C(3) = 10, X(C(3)) = 1, M (6) =10.1 =101
M (7) =10.T =100

Due to Lemma 2.4 each member £(i) of the old Gray code can independently generate two
members .4 (2i) and .M (2i + 1) of the new Gray code. Thus, it is possible to determine the labels

6



of the two children of a cell solely from its own label - without any knowledge of other cells' labels.
Note, that the leftmost cell on each level has label 0 .-. 0 while the rightmost cell has label 10 ... 0.

In order not to have to deal with labels of different lengths, it is assumed that each label
consists of d bits, where d is large enough to accommodate all possible refinements. Hence, the
leading k bits in labels of cells belonging to a level k grid form a k-bit Gray code and the remaining
bits are zero. This assumption is by no means required for the theory to work out, but is helpful
for purposes of implementation.

Example. Generation of labels for a complete hierarchy of four grids, d = 3.

Level 0 : 000
Level I : 000 100
Level 2 : 000 010 110 100
Level 3: 000 001 011 010 110 111 101 100

To avoid confusion, we now formally define when two cells are neighbors within the same grid.

Definition 2.5. Two cells are neighbors at level k > 0 if their labels are of the form co "-" Ch-10 ... 0
and are adjacent in the k-bit reflected Gray code sequence.

Determining the Labels of Neighboring Cells In a Complete Hierarchy of Grids

Once a label has occured on a level it also occurs on all lower levels. That is, a cell has in each
lower level grid one ancestor with the same label. To facilitate determination of neighboring labels
in a hierarchy of grids we make the following definition.

Definition 2.6. In a hierarchy of d grids, a cell C with label C(C) = 0 ... cd-i is said to originate
at grid level k, 1 < k : d, ifk is the largest number so that ck- 1 = and ck cj-2 = 0;
the cell with label 0 ... 0 originates at level 0.

For example, 10... 0 originates at level 1 and 10010... 0 originates at grid level 4. Hence, in
the last example, for instance, 000 has as right neighbors 100 on grid level 1, 010 on grid level 2,
and 001 on grid level 3. If a cell originates at level k, it has neighbors on grid level k and on all
grid levels > k.

A cell C may determine the labels of all of its neighbors by means of the following strategy.
Suppose, the label of C contains an even number of ones, i.e. X(,(C)) = 0, and that it originates
at level k, i.e. (C) = CO ... Ch-210 ... 0.

" Right Neighbors of C.
By Lemma 2.2, C has a right neighbor R, at level k whose label is £(Ri) = co ... CA_.2 0 0 ... 0;
and calls R with labels Z(R) = co ... c -1 0 ... 010 ... 0 are right neighbors of Con level i,

i > k. Thus, C can compute the labels of its right neighbors on lower levels i by setting the ith
bit in its own label equal to 1. For example, 000 has at level 2 a left child with the same label,
and a right child with the new label 010, hence 000 has 010 as its right neighbor on level 2.

* Left Neighbors of C.
By Lemma 2.3, the left neighbor LI, of C on level k has label C(LA) = co ... 4-01'-210l..0.

It must have an odd number of ones, i.e. Z(e(Lt)) = 1, so the rightmost descendants Li of Lk
inherit this label by Lemma 2.4. Therefore, Li is the left neighbor of C on all levels. For

example, 110 on level 2 has as left neighbor 010 on levels 2 and 3.

Cells C whose labels contain an odd number of ones are treated similarly.

7
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Determining the Labels of Neighboring Cells In a Partial Hierarchy of Grids

In a partial refinement or partial hierarchy of one-dimensional grids not necessarily every cell
is refined, that is not every cell gives rise to two cells on the next level; and labels of neighbors in
a partial refinement can differ by more than one bit.

Example. Labels in a partial hierarchy of four grids, d = 3.

Level 0: 000
Level 1: 000 100
Level 2: 000 110 100
Level 3: 000 110 111 100

Comparing this with the preceding example one sees that cell 000 is not further refined
at level 2 and cell 100 is not refined at level 3. Furthermore, 110 has as its right neighbor
U11 on level 3; but its left neighbor is 000 which has not been refined after level 1. Hence,
110 and its left neighbor 000 differ in two bits. S

The algorithm for finding the neighbors of a cell C in such a refinement is based on the princiral
property of Local Uniform Mesh Refinement: each cell (excepting 0 ... 0) has a sibling on the
level on which it originates. Suppose again that cell C has an even number ones in its binary label,
i.e. Z(C(C)) = 0, and that it originates at level k, i.e. (C) = co ... cl,-210 ... 0.

" Right Neighbors of C.
By Lemma 2.2, C has a right neighbor Rt at level k whose label is C(Rk) = co ... Ck-200 ... 0.
Those existing cells A with labels C(Rj) = co ... ck21 0 .. 010 .-. 0 are right neighbors

t-(h+i)

of C on level i, i > k.
" Left Neighbors of C.

If C has a left neighbor Lk on level k then by Lemma 2.3 its label is
,C(L) = co ... 4-34-S2lO .-- 0, and all left neighbors of C on lower levels have this la-
bel. If L1 does not exist then one can reconstruct the ancestors of Lk until an existing one is
found (this is done by simply reversing the process for generating labels of children, Lemmata
2.2 and 2.3).

Again, cells C whose labels contain an odd number of ones are treated similarly.

Notions Useful for Applications
The next definition distinguishes those cells in computational problems that communicate

frequently with each other.

Definition 2.7. In a (partial) hierarchy of d grids, the closest left (right) neighbor N of a cell C
at level k is the closest left (right) cousin without any children. If the hierarchy is complete, the
closest left and right neighbors of a cell are the left and right neighbors at level d - 1.

In the example above, the closest left neighbor of 110 is 000, and its closest right neighbor
is 111. The closest left neighbor of 100 is 111. We assume that a cell knows about the status of
refinement in its immediate vicinity, i.e. it knows, at least, the levels at which its closest left and
right neighbors originate (the label of a closest neighbor can be easily determined from its level,
for instance, by means of the alternate characterization of Gray codes in Lemma 2.4).

For purposes of assessing the workload per processor, only those cells with no children are
considered to be instantiated; that is, if a parent and a child have the same label they are viewed
as one cell.

8
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3. Mapping Labels of One-Dinensional Grids to Processors

The previous section showed how to assign a unique label to each cell in a hierarchy of grids.
Now we want to map the labels to processors in the hypercube such that the identifier (id) of a
processor can be easily computed from the label of the cell, and cells whose labels differ in one bit
are assigned to physically neighboring processors.

Definition 3.1. A hypercube multiprocessor of dimension p >_ 0 contains 2P processrs where the
processors can be identified by p-bit binary ids so that any two processors are physically connected
whose ids differ in I bit.

Consequently, processors in a hypercube of dimension p can be enumerated according to a
binary reflected Gray code sequence of length 2P.Topological properties of hypercube graphs and
their embeddings can be found in [1, 5, 6].

The assignment of labels to processor ida is easy if a grid of 2d cells is mapped to a hypercube
of dimension p where p _ d: the cells in this case occupy processors in a subcube of dimension d,
and the label of a cell is at the same time the id of a processor.

The more interesting case occurs when th'. number 2# of cells exceeds the number of processors
in the hypercube, and when grids are only partially refined. The processor to which a cell C is
assigned is denoted by P(C). Consider a hierarchy of p + 1 grids where the finest grid contains 2'
more cells than there are processors, 1 < 1 < p. Hence the label of each cell C has length d = p + 1.
Our strategy for mapping labels of length p + 1, 1 :_ p, to p-dimensional hypercubes can then be
defined as follows: a cell C with label £(C) = co ... " -I.p ... 1 < I < p, is assigned to
the processor with id

P(C) = {co 9 c,}{ci 9 c+ .. ... e c,+t-1i}cI ..-
= (Co ... cp-1} 9 {Cp ... c,+i.-0... 0).

Remarks.

* Since 0 ... 0 is the identity with respect to XOR, trailing zeros behind the fullstop
do not change the processor id. Hence, one child always occupies the same processor
as its parent and the other child is assigned to an adjacent processor.

* Cells whose labels differ in 1 bit are assigned to physically connected processors; thus,
the processor of a cell contains the parent or the sibling, or it is physically connected
to a processor that contains the parent or the sibling.

* The mapping is consistent: when d < p and the number of processors in the hypercube
exceeds the number of cells in the finest grid then P(C) = L(C) for any cell C.

* We consider here only the case where the number of refinements does not exceed
the dimension of the hypercube (1 - p). This is sufficient for massively parallel
architectures like the Connection Machine.

Example. Consider the case p = 4: a 16 processor hypercube, where each processor
initially contains one cell. Assume that only a single cell C is further refined. Let C have
label C(C) = 0100.00, so it occupies processor P(C) = 0100 (here the fullstop separates
the leading p bits from the remaining bits). Refining C results in two children L and R
with Z(L) = 0100.10 and Z(R) = 0100.00, The respective processors assigned to cells L
and R are P(L) = 1100 and P(R) = 0100. Note that R occupies the processor of its parent
while L is assigned to an adjacent processor. Now, L and R can in turn be refined. The
labels of the two children of L are 0100.10 and 0100.11, they are allocated to processors
P(0100.10) = 1100 and P(0100.11) = 1000. Similarly, R's children 0100.01 and 0100.004!

9



are assigned to the respective processors P(O100.01) = 0000 and P(0100.00) = 0100. Thus,
all four descendants of C occupy different processors.

In general, if the origin of the refinement is a single cell C with C(C) = CO ... cp-1.0 ... 0
then the labels of all cells on level d = p + 1 are identical in their leading p bits, and form a Gray
code in their trailing 1 bits, I 5 1 :5 p; i.e. they are of the form co .. l.zo "'. z.-1. The
processor id of each cell has the form

(co ... cP-1} * (Zo ... X5-10 ... 0}.

Hence one of the two arguments of the XOR function is the same for all cells. Since the XOR
function with a constant argument is bijective each cell is assigned a distinct processor, and in
addition adjacent cells occupy adjacent processors. After I = p refinements each processor contains
one descendant of cell C. Thus, processor allocation and utilization are uniform when the origin of
refinement is single cell.

Now consider the situation when two adjacent cells C, and C 2 constitute the origin of re- •
finement, say p = 4 and C(CI) = 0100.0 and C(C2 ) = 1100.0. The children of C 1 are 0100.0 on
processor 0100 and 0100.1 on processor 1100, the children of C 2 are 1100.0 on processor 1100 and
1100.1 on processor 0100. Obviously the children of the cells occupy each others processors instead
of spreading the load to different processors. This interference occurs because XORing affects ex-
actly that bit in which C1 and C2 differ (the leading bit), and this difference gets lost because each
child of C1 has the same trailing bit as a child of C 2 . In general, if two cells differ in bit i, i > 0,
then at the (i + l)st refinement each descendant of one cell will be assigned to the same processor
as a descendant of the second cell.

Yet, instead of starting XORing with the bit in position 0 and working towards the right, one
could also start XORing with the bit in position p - 1 and work to the left. In the latter case,
however, chances of interference are much greater because of the following argument: in a d-bit
Gray code sequence there are 2d-1 adjacent members that differ in their last bit, hence XORing
on the last bit would result in a 50% chance of interference. In contrast, there are only two pairs
of adjacent members that differ in their leading bit so the likelyhood of interference would be one
in 2d- .

One can always construct cases where our strategies will deliver the worst processor utilization.
However, for our applications such as problems with few regions of concentrated refinement, we
-an give upper bounds on the processor load imbalance, the physical distance to neighboring cells
and the communication traffic. This is done for problems containing a moving region of refinement
in Section 5. One could devise dynamic strategies that give preference to XORing those bits that
are identical in all cells to be refined. We will not consider those strategies here as they are not
predictable or static, and are likely to require a considerable amount of global information.

4. Labels and Mappings for Two-Dimensional Grids

The labels of the cells in a 2d x 2d grid are to be assigned in such a way that labels of the
immediately neighboring cells differ in exactly one bit. By 'immediate neighbors' of a cell we mean
the north, east, south and west neighbors. Denote the cell in row z and column y of the grid
by (z, V), 0 _5 x, y < 2 d - 1. Gray coe'es for multi-dimensional grids are usually constructed by .
allotting a contiguous block of bits to each dimension [1, 6]. We use an interleaved two-dimensional
Gray code, interleaved Gray code for short, to determine the labels: If C(z) = xozi ... xd-1 and
AY) = YoYI "'" Yd-I are the respective Gray codes for the first and second coordinate of cell (z, y)
then its label is C(z,y) = zoyozlyl ... zd- 1 Yd--. Obviously, interleaved Gray codes can also be
used to label higher-dimensional grids.

10
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101001 101011

000000-

101100 100100

010000 110000

Figure 1: Partial hierarchy of three two-dimensional grids.

Example. Labels for a 4 x 4 grid.

0000 0010 1010 1000

0001 0011 1011 1001

0101 0111 1111 1101

0100 0110 1 1110 11100

Thus, if z constitutes the horizontal coordinate axis and y the vertical one then the X co-
ordinates form a horizontal Gray code and the y coordinates from a vertical Gray code. All the
facts that have been established for one-dimensional grids naturally carry over to two-and higher-
dimensional grids by applying the one-dimensional strategy to each coordinate separately. Also,
labels of multi-dimensional grids are mapped to processors by mapping each coordinate separately
according to the one-dimensional strategy (this is possible because grids of any dimension can be
embedded into a suitably sized hypercube [5, 6]).

For example, when constructing a hierarchy of two-dimensional grids, level 1 contains cells

00.0...0 01.0 ... 0

10.0 ... 0 11.0 ... 0

and a cell with label Zk(z, Y) = zOYo "" Zk-lYk-1.0 ... 0 at level k gives rise to the following four
cells at level k + 1

Z(2x, 2y) = L.X.Xv.D ... 0 Z(2z + 1, 2y) = L.X.Xv.0 ... 0

C(2z, 2y + 1) = L.X.)V.O ... 0 C(2z + 1,2y + 1) =L.XyX.O.. 0

1 m
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Figure 2: Region of refinement in the 11th position, where
p=3 and =2.

where L = xoso ... zk-lk-1, X. = X(zo ... :k-1) and X, = X ( -.. Ik-i).
As a consequence, labels of cells with the same parent differ in at most two bits, and the label

of a cell differs from that of a child by at most two bits. At level k, the horizontal coordinates of a
2h x 2k grid form a Gray code sequence of length 2k, and so the vertical coordinates. In a partial
hierarchy of two-dimensional grids, a cell can have more than four neighbors, see Figure 1.

To generate labels for a rectangular 2k x 2d-k grid consider first a wide grid, i.e. 0 < k < d/2.
In this case only the leading 2k bits of the label form an interleaved Gray code and the remaining
bits account for the width of the grid: for 0 : x <_ 2 k - 1, 0 < V < 2d- k - 1, cll (z, V) is given label
zoyo "'. zk.*-lyk-lyk "'" -yd-k-i where zo ... xi-= £(z) and &t - -yd--k-i £(y). The case
k > d/2 of a tall grid is treated similarly. For simplicity of presentation it thus suffices to restrict
the discussion to square grids.

5. Analysis of a Model Problem

Here we consider the problem of one region of refinement that moves across a domain. We
chose the moving region of refinement problem not only because of its resemblance to many practical
applications, but also because it allows us to examine different locations of intensive refinement
within the domain and so to be able to take into account as many cases as possible. At first,
we consider a one-dimensional domain. As we show later, the analysis of one moving region of
refinement in a two- or three-dimensional domain can be easily reduced to the analysis of the
one-dimensional problem.

The One-Dimensional Model

A region of refinement in a one-dimensional domain represents a set of contiguous cells belong-
ing to the grid at level p + 1, see Figure 2.

Since there is only one region of refinement, the area outside the region of refinement can
comprise no two cells that are neighbors on the same level (that is, the cells become 'larger' with
increasing distance from the region of refinement, and outside the region of refinement there can be
no two cells of the same size). Given a p-dimensional hypercube, we assume at first that the region
of refinement consists of 2P cells belonging to the grid at level l + p (as will be shown later, this
assumption is not restrictive). There are two types of cells, refined cells representing the region of
refinement and *t*ide cells representing the area outside the refinement; due to the natural rules &
for the refinement, the outside cells are cousins (siblings of ancestors) of the refined cells. Figure 2
shows refined and outside cells for one position of a moving region of refinement.

Communication can take place

* between a cell and its parent, e.g. between 01011 and 01010 in Figure' 2;

between two neighboring refined cells, e.g. between 01000 and 11000 in Figure 2;
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Ibetween a refined (boundary) cell and a neighboring outside cell, e.g. between 01111 and 01100
in Figure 2;

* between two neighboring outside cells, e.g. between 11100 and 10000 in Figure 2.

Sections 2 and 3 showed how to determine labels and processors for the parent of a cell, and that the
parent is either situated on the same processor as the cell or on a physically connected processor.
We will now show that the labels of any two neighboring cells in the above situations differ in no
more than two bits. That is, the communication of two such cells involves at most one intermediate
processor.

Processor Distance of Neighboring Cells In the One-Dimensional Model

From Sections 2 and 3 we know how to obtain the label and the processor for neighboring cells
within the refinement; neighbors within the refinement are always situated on physically connected
processors. Outside the refinement one has to deal with a partial hierarchy but in this case there
is a simple procedure for finding the labels of all outside cells. To this end we distinguish the two
boundary cells of the refinement.

Definition 5.1. For a refinement of 2P cells belonging to a grid at level p+l, i 1, Ctar denotes
the leftmost, leading cell and C., the rightmost, trailing cell of the refinement.

Two cases can occur: either the first cell of the region of refinement, C7tt, has an even
number of ones or it has an odd number of ones. The case where it has an odd number of ones,
X(C,t.t) = 1, can be dispensed with as follows. If X((7,rt) = I then by Lemma 2.2 it has a left
sibling L, so L is the cell outside the region of refinement adjacent to C.,t.,t. Since the labels of
Ctt and L differ in the rightmost bit, their processor ids differ in 1 bit, and Catt and L are
allocated to physically connected processors. As the region of refinement is of length 2P one has
X(C.d) = 0 if X(Ct,.,t) = 1. In this case, C.,,w has a right sibling R whose label differs from that
of C.W in the rightmost bit, by Lemma 2.2, and C,,j and R are assigned to physically connected
processors. Hence, if X(Ct.,) = 0 then Ct.,t is the leftmost cell in the grid at level p + 1, and
otherwise L is. As the remaining two situations: communication between two outside cells, and
communication between a refinement (boundary) cell and an outside cell when X(C.c.,t) = 1 can
be dealt with in one, it suffices to consider refinements for which X(C.tt) = 0.

Lemma 5.1. Let C be a cell to the left of the region of refinement or C.t,t, and X(C) = 0. The
labe of the left neighbor L of C is obtained by complementing in Z(C) the bit with the rightmost
one and the bit preceding it. Formally, if

= C ... 3 -... 0 0 0

then Z(L) = CO ... ... 0, and X(L) = 0.

Proof. Let C originate at level k, i.e. £(C) = CO ... C¢_s-34 10 ... 0. Then the parent P of C
has the label C(P) = CO .." C€-s¢-2O0 ... 0, and X(P) = 1. By Lemma 2.2 P has a left sibling L
with C(L) = co ... Ch_06-_00 ... 0, and X(L) = 0. As there is only one region of refinement and
L is outside the refinement it is not further refined, so L is the left neighbor of C.

Hence, starting with C.tat and proceeding towards the left one can successively find the left
neighbors of all cells to the left of the refinement. If Ct.,tt consists of an even number of ones then
so do all cells to the left of it by Lemma 5.1, and the leftmost cell in the domain is 0 ... 0. Similar
facts can be established for the cells to the right of the refinement.
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Lemma 5.2. Let C be a cell to the right of the refinement or C,,, and X(C) = 1. The label of
the right neighbor R of C is obtained by complementing in Z(C) the bit with the rightmost one
and the bit preceding it. Formally, if

Z(C)=co C sclO .-. 0 10 ... 0

then (R) = CO ... C-4-S_2 00 ... 0, and .(R) = 1.

Proof. Analogous to the one of Lemma 5.1.

Hence, starting with C.W and advancing towards the right one can successively find the right
neighbors of all cells to the right of the region of refinement. If O consists of an odd number of
ones then so do all cells to the right of it by Lemma 5.2, and the rightmost cell in the domain is
10 ... 0.

Independently of the value of X(Ctt,), the number of cells to the left of the region of refinement
can be obtained by determining the position j of C(Ct.,t) in the Gray code sequence G,+j so
that G , + ) = C(C.,,t) using Lemma 2.2, and then counting the number of ones in the binary
representation of .j. For example, in Figure 2, p+l -- 5 and (C.,ts,) = 01111, so 01111 = GS(10)
and j = (10)10 = (01010)2. This means, that Ct.,t is preceded by two cells, namely 00000
and 01100. In general, the number of cells to the left of the refinement cannot exceed p + 1.
One can get the number of cells to the right of the refinement similarly by finding i such that S
Gp+z(i) = Z(C.,w) and counting the ones in the binary representation of 2P+1 - - i. In the above
example C(C,,W) = 11001, so 11001 = Gs(17) and 26 - I - i = (14)1o = (01110)2. Thus, CW, is
succeeded by three cells: 11010, 11100 and 10000.

The total number of cells to the left and right can be computed by noticing that i = +2 -
1 mod 2P+', where the refinement is of length 2'. For the case i < 2P+ ' the modulo operation may
be ignored, and the number of cells to the right equals the number of bits in 2P+ ' - j - 2P. This S
can be related to the number of bits in j, because 2-'P+ - " is + 1, with only the first p + l bits
taken. Thus the number of cells to the right is the number of bits in j - (2P - 1). Combining this
with the fact that j < 2'P+ - 2', the total number of bits (and hence cells) to the left and right of
the refinement can not exceed p + 1 + 1.
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Processor Load In the One-Dimenstonal Model

It seems to be easiest, at first, to analyze the processor load only for those positions in which
each cell of the refinement is assigned to a different processor - remember that by assumption the
region of refinement consists only of as many cells as there are processors. Assume that the cells
of a grid at level p, + I represent the refinement, 1 :5 1 : p; they can be labelled by members of a
(p, + 1)-bit Gray code sequence.

Lemmna 5.3. For any 12! 1 the Gray code sequence G,+a can be represented as a tensor product
of two sequences G., and G1 as follows:

Gp+1(O) = G,(o).Gp(o)

Gp12'- 1) = Gj(O).G,(2P - 1)
Gp+12P)= Gj(1).Gp(2P - 1)

Gp+(2~l- 1) = Gg(1).G,,(O)

Gp+12P+-')= 0G(2' - 1).Gp(2P 1)

G 12P - 1) = Gg(2' - )G(,

where the fullstop denotes concatenation.

Proof. By induction using Definition 2.1 of Gray code sequences.

Definition 5.2. A region of refinement of 2P cells belonging to a grid at level p + 1, 1 > 1, is in a
special position if the first 1 bits of all refined cells are identical:

G1 ().G (0 , -- ,G1 (J).G,(2P -1), j even

ANl lab-elm in Gp~j having G, (j) as a prefix belong to the jth ordinal group of G,+,.

Remark. A region of refinement in any special position satisfies X(C.t,t~) = 0 and
X( )=1I.

A refinemnent in a special position consists of 2P cells that are identical in their leftmost I
bits wo ... za1_ and form a Gray code sequence of length 2P in their remaining p bits. In this case,
the mapping of labels to processors amounts to shifting and rotating the Gray code sequence Gp:
a refined cell C with label L(C) = zo ... x1-1co ... cp-. 1 is mapped to processor

P(C) = (ZO *.z... aco ... c,,..1...i} {c,,.z ... C,~1O ... O}

= {CP.... cp-aco c... p1-i} (E){0..O 11 . 0).
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Since this transformation represents a bijective mapping, each refined cell is assigned to a different
processor, so each processor contains exactly one cell of the region of refinement.

Now consider the outside cells, and start with the case j even. By assumption, £(Ct,-t) =
zo ... x1_- --" 0 and X(C.,#.) = 0. So, by Lemma 5.1, all cells L to the left of Ct.r have 0
labels of the form C(L) = Sb "'" - I-0 ... 0 with Z(L) = 0, and therefore the label is identical
to the processor id P(C)= yo ." 1-10 ".. 0. Since the labels of all cells to the left of Ct are
distinct, they are mapped to different processors. Similary, £(Cm,,) = o ... zu-1l0 ... 0, and
by Lemma 5.2 all cells R to the right of Q,, have labels of the form C(R) = zo ... z*-10 ... 0
with X(R) = 1, and again the labels are equal to the processor ida. Thus, all cells outside the
refinement have different labels and are therefore mapped to different processors. Consequently,
each processor contains at most one outside cell. Alternatively, if j is odd then the above argument
applies as well by exchanging the r6les of Ct.,t and CQ1.. We have now proved the following

Theorem 5.1. When the domain contains a region of refinement of 2P cells belonging to a grid
at level p + 1, 1 _5 I : p, in a special position then each processor contains one refined cell and at
most one outside cell.

The notion of special sequences can be generalized to allow for longer sequences.

Corollary 5.1. When the domain contains a region of refinement of m2 P cells belonging to a grid
at level p + 1, 1 5 m < 2 8, 1 < 1 < p, in a special position then each processor contains m refined
cells and at most one outside cell.

Proof. Same as for the previous theorem, except that now every processor contains m refined cells.

Thus, in case of a complete refinement the distribution of work is uniform: each processor
contains 21 (refined) cells (and no outside cell). We can now relax our assumptions about the
position of the region of refinement within the domain.

Corollary 5.2. When the domain contains any region of refinement consisting of m2P cells be-
longing to a grid at level p, + 1, 1 1: 5 p, then each processor contains at most m + 1 refined cells
and one outside cell.

Proof. Any sequence of length m2P can be embedded into a special sequence of length (m + 1)2P.
Now apply Corollary 5.1.

The corollary states that the maximum load per processor is m + 2 cells. One can easily find
examples for which this bound is achieved (see Figure 2). Since there are m times more refined
cells than there are processors, the processor load is within a small constant from being optimal.

Now, we are in the position to drop all assumptions with regard to the region of refinement.

Corollary 5.3. When the domain contains a region of refinement consisting of at most m2 p cells
belonging to a grid at level p + 1, 1 :_ I < p, then each processor contains at most m + I refined
cells and one outside cell.

Communication Traffic In the One-Dimensional Model

It in assumed that the connection between any two processors in the hypercube is bi-directional,
that is, two processors can simultaneously send messages to each other. We also consider each time
step to be partitioned into 21 slots, so that in the jth slot processors belonging to the jth ordinal
group can emanate their messages. Since a processor can contain several cells, there is a unique cell
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to processor assignment in each time slot, and at most one cell per processor can emanate messages
in each time slot. This is particularly useful for an implementation on the Connection Machine,
where at each time step a processor is either 'inactive' or executes the same instruction as all other
active processors (data parallelism). For the following types of information transfer one can show
that there is at most one message on any processor-to-processor link:

* Each cell transmits a message to its parent.
The parent is in the same processor as the cell or in an adjacent processor, and each link is
occupied by at most one message.

* Each parent transmits a message to its two children.
As above.

e Each cell transmits a message to its closest right (left) neighbor.
If the label of the cell and that of its closest right (left) neighbor are adjacent members in the
(p+ )-bit binary reflected Gray code sequence, then the cell and its neighbor occupy adjacent
processors (because there is only one region of refinement they could not be neighbors in any
shorter sequence). Otherwise, assume that the cell C originates at level k and apply Lemmata
5.1 and 5.2 as follows: C sends the message first to an intermediate processor containing C's
left (right) neighbor N at level k; this processor in turn forwards the message to the processor
holding the right (left) neighbor of N on level k - 1. For instance, if cell 11001 in Figure 2
wants to send a message to its right neighbor 11010, it first sends it to its left neighbor on
level 4, 11000, which in turn forwards it to its right neighbor on level 3, 11010. Because of
the bidirectional links, and the fact that the right (left) neighbor of N on level k - 1 is not its
closest right (left) neighbor, each link carries at most one message.

Some of the 2' time slots may not be needed because in the single region of refinement problem,
as in any partial hierarchy, not all cells exist.

The Two- and Three-Dimensional Models 0

One can regard the cells in a two-dimensional domain as a sequence or stack of one-dimensional
domains (this is possible because of the interleaved Gray code: for each one-dimensional domain
only the coordinates in one direction form a Gray code). Similarly, a three-dimensional domain is
viewed as a stack of planes, where each plane consists of a sequence of one-dimensional domains.

In the multi-dimensional case one can distinguish one-dimensional domains in each coordinate. 0
As the labels of the closest neighboring cells can differ in at most two bits in case of one dimension,
they can differ in four bits in two dimensions and in six bits in three dimensions.

On a p-dimensional hypercube, each processor contains at most 2(v/- + 2) cells for a two-
dimensional region of refinement of V/, 2p/2 x vO-2P/ 2 cells, and at most 3(M I/ 3 + 2) cells for a
three-dimensional region of refinement of ml/2P/3 X mlIS2p/3 x mi/S 2P/3 cells. Thus, the workload
per processor is linear in the number of dimensions and thus improves with increasing number of
dimensions.

6. Experlental Results

This section contains a few experimental results. We have simulated the algorithms to gather
information on their behavior and we have also implemented them on the Connection Machine as
proof-of-principle.

The simulations were conducted with a one-dimensional model problem consisting of a zone
of refinement, a shock for instance, moving left to right. As this region of refinement moves,
information is collected on the maximum and minimum processor loads and message distances.
Figures 4 and 5 show typical results for the moving refinement.
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Compute a processor label on the CM. The label has d bits and the
processor dimension is p. The value of the label is in absolute
bit location v and the result is left in absolute bit location p.
Only on selected processors.
*/

ProcLabel( v, d. pv. p )
CM-uemaddrt v, pv;
int d. p;

unsigned int llen;
llen - 2 * p - d;

CM.move( pv + llen, v. (unsigned) (d-p));
CM-logxor( pv + llen. vep. (unsigned) (d-p));
C.-ove( pv. v+d-p. llen

Figure 3: Pars in c function to perform the mapping of
processor labels to processor numbers.

The results in Figure 4 agree with the results in Corollary 5.3, and those in Figure 5 agree with
our discussion on the communication traffic. Simulation results for different numbers of processors
and refinement region sizes have been obtained; they are very similar to the figures shown here.

To test our thesis that this method can be efficiently implemented on a SIMD architecture,
we ran the algorithm on a Connection Machine. The code was written in c using the 'Paris in
c" functions. Figure 3 gives an impression of the simplicity of the code, in this case the function
performed is the processor mapping.

7. Conclusions

In this paper we have presented a static procedure for implementating recursive mesh refine-
ment on hypercubes. The assignment to processors of cells belonging to a hierarchy of adaptive
uniform grids is performed in two stages:

1. Each cell is assigned a unique label.

2. Each label is mapped to a processor identifier (id).

The first stage preserves coherence: it is easy to find the labels of siblings, ancestors and descendants
of a cell in the hierarchy of grids; once the label has been determined the corresponding processor
can be found without much effort. The second stage makes it possible to ensure that related cells
are allotted to physically close processors of the hypercube, and that the work load is distributed
reasonably across all processors for our applications. Since the labelling strategy is static, a cell
can determine the label of any other cell at any level without requiring external information.

For the solution of PDEs on multi-dimensional grids, we advocate the use of an interleaved
Gray code that does not represent the bits associated with a coordinate as a contiguous group,
but 'scatters' or interleaves the bits associated with all coordinates. For practical applications,
interleaved Gray codes result in essentially constant communication times.

Our scheme has the following advantages:

& It does not require any prior knowledge on the maximal level of refinement.

* It is predictable: the processor assignment for any potential cell can be determined in advance.
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Figure 4: Processor load for 16 processors and an 8 bit
label. The refinement is 16 cells long. The top line is the
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" It is simple and fast: each cell can determine the processor assignment of any other by simple
bit-operations.

" It is consistent: in case of complete refinement the assignment of cells to processors is uniform.

" It performs well in the case where a few regions require thorough refinement.
" The load balance improves with increasing dimensionality of the problem.
" It takes full advantage of the rich hypercube processor interconnection topology.
" The theoretical results are corroborated by experimental evidence.

Future work will deal with dynamic processor assignment strategies that require more than local
knowledge, and processor assignment strategies for many levels of refinement (I > p).
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